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Content
Co-design Strategy

Preliminary Demonstrator for HL LHC : Data Concentrator ASIC for HG Cal 
● Establish feasibility 
● Establish methodology

Moving Intelligence to the data source (Ideas to be demonstrated)
● Neuromorphic Digital implementation
● Analog implementation using floating gates
● Analog implementation using memristive cross-bar arrays

Creating a distributed AI model
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On-detector intelligence using on-chip Machine Learning
● Resource constrained environment

○ High Radiation

○ Limited Power/Material budget

○ Where should this intelligence be added
● Efficiency and reconfigurability

○ Ultra-low energy per inference at 
extremely high rates (10’s ns)

○ Reprogram both network and parameters 

○ On-chip learning / inference
● Physics based Algorithms

○ Independent events

○ Depth vs. classification
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Physics based AI

Efficiency and 

Reconfigurability

Heterogenous System 
in Package

Digital scaling /       
Mixed signal approach

Integrated non-volatile memory 
/ 3DIC / Photonics/ Wireless

HL-LHC / XFEL / 
Synchrotron light sources

CNN / SNN/ Transfer 
learning/ Distributed AI  



Staged approach Partnership Neuromorphic community

Partnership with big industry

+



• Enable edge compute : Data compression for efficient usage of power and bandwidth
• Programmable and Reconfigurable: ability to reprogram weights to adjust for detector conditions and 

eventually lead to self-learning intelligent detectors
• Hardware – Software codesign : Algorithm driven architectural approach  
• Optimized : Low power and Low latency
• Operating in extreme radiation environment: 200 M rad

• Autoencoder for data compression is the first use case towards a DNN based on-chip learning and inference

Encoder Decoder

On-detector ASIC

Reprogrammable 
weights

Original data

Reconstructed 
data

Compressed data
- Efficient power and bandwidth usage

reconfigurable

Rate: 40MHz

Deep Neural Network: Autoencoder for data-compression

● Work in latent space
● Pruned network 
● Full decoding with mirror weights

Off-detector FPGA
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HL LHC High Granularity Calorimeter*: Data flow

*Used as test case

CNN: Encodes information by correlating spatial features
• conv2D layer – extract spatially corelated geometric features
• Flatten layer – Vectorizes the 2D image from the conv2D layer [8 x 4 x 4 = 128 x 1]
• Dense layer – aggregates the various features to provide higher order information
• ReLU – an activation function which introduces non-linearity by applying thresholds (part of both the 

conv2D and dense layers)



Physics Driven Hardware Co-design
● Algorithm development based on Physics data
● hls4ml simplifies the design of on-chip ML accelerators

■ | hls4ml directives | << | HLS directives |
■ C++ library of ML functionalities optimized for HLS

● TMR4sv_hls: Triple Modular Redundancy tool for System 
Verilog & HLS



Rapid design prototyping
Neural Network architecture optimization 4

Fig. 3. The autoencoder neural network architecture and data flow for the
baseline encoder model

minimizes this total rearrangement cost, EMD(A,B). While
the performance of the autoencoder is assessed with EMD,
this metric is not used directly in the algorithm training, as it
involves non-linear and computationally intensive operations.
Models are instead trained with a modified �2 loss function
incorporating cell-to-cell distances, as a fast approximation of
EMD. Specifically, individual TCs are re-summed into groups
of 2⇥2 and 3⇥3 “super-cells” with corresponding �2 values
computed for the coarsified images. The total loss sums each
such �2 together, resulting in a comparatively lenient penalty
when mis-reconstruction occurs only on small spatial scales.
Including these additional �2 terms in the training procedure
is found to yield significant improvements to the autoencoder
performance, as measured with EMD.

Baseline Encoder Model
A simple encoding NN with a single convolutional and

dense layer architecture is investigated. Normalized inputs
from hexagonal sensors are arranged into three arrays of 4⇥4
to form a regular geometry. The convolution layer consists of
eight 3⇥3⇥3 kernel matrices, giving a 8⇥4⇥4 output after
convolution. These 128 values are flattened and fed through a
dense layer to yield 16 9-bit output values. ReLu activations
are applied before and after the dense layer. This leads to
a total of 2,288 weight parameters (dominated by the 2,064
parameters used to configure the dense layer), each of which
are specified with 6-bit precision. A single inference requires
a total of 4,448 multiply-and-accumulate operations, with
similar requirements from the convolution (2,400) and dense
layers (2,048). The size and complexity of this baseline model
are constrained by area, on-chip memory and interfaces, and

NN outputsSensor output 
bandwidth

64 bits 
160 bits

6 
10 
16

Fig. 4. Median EMD for decoded HGCal test images as function of sensor
occupancy for six NN configurations. Vertical lines (suppressed for the 160-
bit configurations) denote 68% EMD intervals. Occupancy is defined as the
number of TCs with signals exceeding one minimum ionizing particle divided
by cosh ⌘ where ⌘ is the pseudorapidity of the TC. (Results shown for version
of NN with maximum of 10 bits for each of 16 outputs rather than 9 bits as
described in the text.)

power, which impose additional optimization considerations.
The encoder architecture with the reconfigurable weights is
illustrated in Fig. 3

Optimization Considerations and Comparisons
While the presence of a single convolution layer is critical

for good physics performance of the algorithm (approximated
by the EMD between input and decoded images), adding more
filters or additional convolution layers only weakly improves
physics performance, at the expense of significantly increased
area. Changes in the number and size of the dense layers yield
more dramatic differences.

Figure 4 shows a sweep over the number of dense layer
outputs, where remaining aspects of the design are fixed
based on hardware constraints: the precision of outputs and
weights are coherently varied to ensure that both the total
number of outputs and the weight bits are fixed. Architec-
tures featuring many outputs with lower relative precision
consistently outperform their counterparts. The autoencoder
is robust across a variety of conditions and performs well in
the high-occupancy regime, which poses the greatest challenge
for trigger reconstruction.

Reconfigurability: Figure 4 also demonstrates how the
same NN encoder can be re-optimized and configured for
new data-taking conditions, by comparing sensors in detector
regions requiring low- and high-throughput. The maximum
data throughput of 144 bits from 16 9-bit outputs can be
reduced through fully configurable selective truncation. Ex-
pected use cases include transmission of (48,80,112, 144) bits
from 16 (3,4,7,9)-bit outputs, though the network can also
be configured to transmit fewer than 16 outputs, or a mix of
precisions.

IV. IMPLEMENTATION METHODOLOGY AND RESULTS

In this section, we detail the implementation of the trained
neural network described in Sec. III in the ECON-T ASIC.



Goals for scientific discovery

Co-design with algorithm

● Convert raw data to physics information
● Reconfigurable pixel clusters for classification dependent on detector 

geometries
● Create hierarchical network and enable parallel computation.
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System level constraints

Novel Device Development 
Highly Granular Sensors 

capable of producing both 
precise timing as well as 

charge information

New Machine learning 
algorithms for data 
processing (feature 

extraction and fast Inference)

Frontend 
Signal 

processing

Backend 
Data 

processing

Pixel level 
solution

Top level 
Architecture

ROIC



Pixel Detector: Proposed ML implementation 17
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Digital neuromorphic  implementation Analog – Mixed Signal implementation using 
floating gates or memristive cross-bar arrays
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• Ability to work in the 
latent space 
(downstream 
resources)

• Reconfigurability vs. 
pruning? 

• On-chip inference 
vs. on-chip training?

• Light weight 
models?

• Can lead to self 
calibrating 
detectors?



Use digital spiking neural network
● Local neighborhood for 1st stage 

of classification

○ Compute total energy and track 
angle by spatio-temporal 
correlation

● Mature systems are based on 
these SNNs e.g. Loihi, True-North, 
Spinnakar (in adv geometry 
nodes)

● Low–power since it runs without a 
clock

● HL- LHC case- since events are 
uncorrelated between bunches we 
don’t need a complex network 
requiring historic information 19



Vector Matrix Multiplication

● Basic building block of neural network
● Analog implementation
● Small footprint, programmable, large 

resistors 
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Integrate a Field programmable Analog Array (FPAA)
● Programmable Floating gate transistors for weights and 

switches
● Structures are available in standard CMOS process (have 

been demonstrated in 350 nm to 40 nm nodes)
● Radiation performance – unknown
● Uses operation transconductance amplifier (OTA) with 

floating gates for Vector Matrix multiplication
● Reconfigurable architecture by using a switch matrix  and 

Manhattan routing to define interconnections
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Memristive cross-bar arrays
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D. Strukov, UCSB

• Use of programmable resistors ( 1 – 10 GΩ
• Small footprints ( < 1µm2)



Data collection and processing split at 3 levels

● Sensors: Single 
ASICs

● Devices: Detectors / 
Data concentrators

● Off Devices: 
Processing farms
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Commercial - Qualcomm



Enhance AI performance using 5G/wireless

● Communicate between layers for more efficient data processing
● Correlations between layers can provide the best compression
● Local edge cloud can allow for low latency partial processing offload 
● Use as continuous learning, additional capacity and maybe increase precision 24

Commercial - Qualcomm



Conclusion
● Algorithms, Design Tools and Hardware must be co-designed for efficient 

implementation
● Analog-Mixed Signal & Beyond CMOS techniques can provide energy 

efficient computation, and their reliability in extreme environments need to 
be explored

● 5G/6G/Wireless can enable distributed AI for responsive autonomous
systems

● A staged approach could lead to robust solutions
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